30 research outputs found

    Plume mapping and isotopic characterisation of anthropogenic methane sources

    Get PDF
    Methane stable isotope analysis, coupled with mole fraction measurement, has been used to link isotopic signature to methane emissions from landfill sites, coal mines and gas leaks in the United Kingdom. A mobile Picarro G2301 CRDS (Cavity Ring-Down Spectroscopy) analyser was installed on a vehicle, together with an anemometer and GPS receiver, to measure atmospheric methane mole fractions and their relative location while driving at speeds up to 80 kph. In targeted areas, when the methane plume was intercepted, air samples were collected in Tedlar bags, for delta C-13-CH4 isotopic analysis by CF-GC-IRMS (Continuous Flow Gas Chromatography-Isotope Ratio Mass Spectrometry). This method provides high precision isotopic values, determining delta C-13-CH4 to +/- 0.05 per mil. The bulk signature of the methane plume into the atmosphere from the whole source area was obtained by Keeling plot analysis, and a delta C-13 -CH4 signature, with the relative uncertainty, allocated to each methane source investigated. Both landfill and natural gas emissions in SE England have tightly constrained isotopic signatures. The averaged delta C-13-CH4 for landfill sites is -58 +/- 3%o. The delta C-13-CH4 signature for gas leaks is also fairly constant around -36 +/- 2 parts per thousand, a value characteristic of homogenised North Sea supply. In contrast, signatures for coal mines in N. England and Wales fall in a range of -51.2 +/- 0.3 parts per thousand to 30.9 +/- 1.4 parts per thousand, but can be tightly constrained by region. The study demonstrates that CRDS-based mobile methane measurement coupled with off-line high precision isotopic analysis of plume samples is an efficient way of characterising methane sources. It shows that iiotopic measurements allow type identification, and possible location of previously unknown methane sources. In modelling studies this measurement provides an independent constraint to determine the contributions of different sources to the regional methane budget and in the verification of inventory source distribution. (C) 2015 Elsevier Ltd. All rights reserved

    Anthropogenic methane plume detection from point sources in the Paris megacity area and characterization of their ÎŽ<sup>13</sup>C signature

    Get PDF
    International audienceMitigating anthropogenic methane emissions is one of the available tools for reaching the near term objectives of the Paris Agreement. Characterizing the isotopic signature of the methane plumes emitted by these sources is needed to improve the quantification of methane sources at the regional scale. Urbanized and industrialized regions such as the Paris megacity are key places to better characterize anthropogenic methane sources. In this study, we present the results of the first mobile surveys in the Paris region, assessing methane point sources from 10 landfills (which in the regional inventory are the main emission sector of methane in the region), 5 gas storage sites (supplying Paris) and 1 waste water treatment (WWT) facility (Europe’s largest, second worldwide). Local atmospheric methane concentration (or mixing ratio) enhancements in the source plumes were quantified and their d13C in CH4 (further noted d13CH4) signature characterized. Among the 10 landfills sampled, at 6 of them we detected atmospheric methane local enhancements ranging from 0.8 to 8.5 parts per million (ppm) with d13CH4 signatures between -63.7 ± 0.3 permils (‰) to - 58.2 ± 0.3 ‰. Among the 5 gas storage sites surveyed, we could observe that 3 of them were leaking methane with local methane concentration enhancements ranging from 0.8 to 8.1 ppm and d13CH4 signatures spanning from -43.4 ± 0.5 ‰ to -33.8 ± 0.4 ‰. Dutch gas with a d13CH4 signature of -33.8 ± 0.4 ‰ (typical of thermogenic gas) was also likely identified. The WWT site emitted local methane enhancements up to 4.0 ppm. For this site, two d13CH4 signatures were determined as -51.9 ± 0.2 ‰ and -55.3 ± 0.1 ‰, typical of a biogenic origin. About forty methane plumes were also detected in the Paris city, leading to local concentration enhancements whose origin was in two cases interpreted as natural gas leaks thanks to their isotopic composition. However, such enhancements were much less common than in cities of North America. More isotopic surveys are needed to discriminate whether such urban methane enhancements are outcoming from gas line leaks and sewer network emanations. Furthermore, our results lead us to the conclusion that the regional emissions inventory could underestimate methane emissions from the WWT sector. Further campaigns are needed to assess the variability and seasonality of the sources and of their isotopic signature, and to estimate their emissions using methods independent of the inventory

    Methane Mitigation:Methods to Reduce Emissions, on the Path to the Paris Agreement

    Get PDF
    The atmospheric methane burden is increasing rapidly, contrary to pathways compatible with the goals of the 2015 United Nations Framework Convention on Climate Change Paris Agreement. Urgent action is required to bring methane back to a pathway more in line with the Paris goals. Emission reduction from “tractable” (easier to mitigate) anthropogenic sources such as the fossil fuel industries and landfills is being much facilitated by technical advances in the past decade, which have radically improved our ability to locate, identify, quantify, and reduce emissions. Measures to reduce emissions from “intractable” (harder to mitigate) anthropogenic sources such as agriculture and biomass burning have received less attention and are also becoming more feasible, including removal from elevated-methane ambient air near to sources. The wider effort to use microbiological and dietary intervention to reduce emissions from cattle (and humans) is not addressed in detail in this essentially geophysical review. Though they cannot replace the need to reach “net-zero” emissions of CO2, significant reductions in the methane burden will ease the timescales needed to reach required CO2 reduction targets for any particular future temperature limit. There is no single magic bullet, but implementation of a wide array of mitigation and emission reduction strategies could substantially cut the global methane burden, at a cost that is relatively low compared to the parallel and necessary measures to reduce CO2, and thereby reduce the atmospheric methane burden back toward pathways consistent with the goals of the Paris Agreement

    Carbon isotopic signature of coal-derived methane emissions to the atmosphere: from coalification to alteration

    Get PDF
    Currently, the atmospheric methane burden is rising rapidly, but the extent to which shifts in coal production contribute to this rise is not known. Coalbed methane emissions into the atmosphere are poorly characterised, and this study provides representative ή13CCH4 signatures of methane emissions from specific coalfields. Integrated methane emissions from both underground and opencast coal mines in the UK, Australia and Poland were sampled and isotopically characterised. Progression in coal rank and secondary biogenic production of methane due to incursion of water are suggested as the processes affecting the isotopic composition of coal-derived methane. An averaged value of −65 ‰ has been assigned to bituminous coal exploited in open cast mines and of −55 ‰ in deep mines, whereas values of −40 and −30 ‰ can be allocated to anthracite opencast and deep mines respectively. However, the isotopic signatures that are included in global atmospheric modelling of coal emissions should be region- or nation-specific, as greater detail is needed, given the wide global variation in coal type

    Evaluating methane inventories by isotopic analysis in the London region

    Get PDF
    A thorough understanding of methane sources is necessary to accomplish methane reduction targets. Urban environments, where a large variety of methane sources coexist, are one of the most complex areas to investigate. Methane sources are characterised by specific ÎŽ13C-CH4 signatures, so high precision stable isotope analysis of atmospheric methane can be used to give a better understanding of urban sources and their partition in a source mix. Diurnal measurements of methane and carbon dioxide mole fraction, and isotopic values at King’s College London, enabled assessment of the isotopic signal of the source mix in central London. Surveys with a mobile measurement system in the London region were also carried out for detection of methane plumes at near ground level, in order to evaluate the spatial allocation of sources suggested by the inventories. The measured isotopic signal in central London (−45.7 ±0.5‰) was more than 2‰ higher than the isotopic value calculated using emission inventories and updated ÎŽ13C-CH4 signatures. Besides, during the mobile surveys, many gas leaks were identified that are not included in the inventories. This suggests that a revision of the source distribution given by the emission inventories is needed

    Environmental baseline monitoring for shale gas development in the UK: identification and geochemical characterisation of local source emissions of methane to atmosphere

    Get PDF
    Baseline mobile surveys of methane sources using vehicle-mounted instruments have been performed in the Fylde and Ryedale regions of Northern England over the 2016–19 period around proposed unconventional (shale) gas extraction sites. The aim was to identify and characterise methane sources ahead of hydraulically fractured shale gas extraction in the area around drilling sites. This allows a potential additional source of emissions to atmosphere to be readily distinguished from adjacent sources, should gas production take place. The surveys have used ethane:methane (C2:C1) ratios to separate combustion, thermogenic gas and biogenic sources. Sample collection of source plumes followed by high precision ή13C analysis of methane, to separate and isotopically characterise sources, adds additional biogenic source distinction between active and closed landfills, and ruminant eructations from manure. The surveys show that both drill sites and adjacent fixed monitoring sites have cow barns and gas network pipeline leaks as sources of methane within a 1 km range. These two sources are readily separated by isotopes (ή13C of −67 to −58‰ for barns, compared to −43 to −39‰ for gas leaks), and ethane:methane ratios (0.05 for gas leaks). Under a well-mixed daytime atmospheric boundary layer these sources are generally detectable as above baseline elevations up to 100 m downwind for gas leaks and up to 500 m downwind for populated cow barns. It is considered that careful analysis of these proxies for unconventional production gas, if and when available, will allow any fugitive emissions from operations to be distinguished from surrounding sources

    Rising atmospheric methane: 2007-2014 growth and isotopic shift

    Get PDF
    From 2007 to 2013, the globally averaged mole fraction of methane in the atmosphere increased by 5.7±1.2ppb yr−1^{-1}. Simultaneously, ÎŽ13\delta^{13}CCH4_\text{CH4} (a measure of the 13^{13}C/12^{12}C isotope ratio in methane) has shifted to significantly more negative values since 2007. Growth was extreme in 2014, at 12.5±0.4ppb, with a further shift to more negative values being observed at most latitudes. The isotopic evidence presented here suggests that the methane rise was dominated by significant increases in biogenic methane emissions, particularly in the tropics, for example, from expansion of tropical wetlands in years with strongly positive rainfall anomalies or emissions from increased agricultural sources such as ruminants and rice paddies. Changes in the removal rate of methane by the OH radical have not been seen in other tracers of atmospheric chemistry and do not appear to explain short-term variations in methane. Fossil fuel emissions may also have grown, but the sustained shift to more 13^{13}C-depleted values and its significant interannual variability, and the tropical and Southern Hemisphere loci of post-2007 growth, both indicate that fossil fuel emissions have not been the dominant factor driving the increase. A major cause of increased tropical wetland and tropical agricultural methane emissions, the likely major contributors to growth, may be their responses to meteorological change.This work was supported by the UK Natural Environment Research Council projects NE/N016211/1 The Global Methane Budget, NE/M005836/1 Methane at the edge, NE/K006045/1 The Southern Methane Anomaly and NE/I028874/1 MAMM. We thank the UK Meteorological Office for flask collection and hosting the continuous measurement at Ascension, the Ascension Island Government for essential support, and Thumeka Mkololo for flask collection in Cape Tow

    Global and regional emissions of radiocarbon from nuclear power plants from 1972 to 2016

    Get PDF
    CH4 and CO2 emissions from geologic sources, which are devoid of radiocarbon (14C), dilute the atmospheric 14C/C ratio. Observations of 14C/C can be used to estimate fossil fuel-derived CH4 and CO2. However, the atmospheric 14C/C ratio is perturbed by emissions of 14C from nuclear power plants (NPPs) and fuel reprocessing sites, which may affect such 14C/C-based estimation if they are not correctly quantified. We calculate NPP 14C emissions for CO2 and CH4 from 1972–2016 using standard emission factors (14C emitted per unit of power produced) and analyze trends in global and regional emissions. We use available observations of 14C emissions and power generation in Europe to assess emission factors for different reactor types, as well as potential differences related to the age or manufacturer of the NPPs. Globally, nuclear 14C emissions increase until 2005 and then decrease, mostly because of the closure of gas-cooled reactors in the United Kindom and the shutdown of light water reactors after the Fukushima nuclear accident in March 2011. Observed emission factors in Europe show strong variability, spanning values from 0.003 to 2.521 TBq/GWa for PWR and from 0.007 to 1.732 TBq/GWa for BWR reactors, suggesting more information and more sophisticated models are needed to improve estimates of 14C emissions

    Efficient Sampling of Atmospheric Methane for Radiocarbon Analysis and Quantification of Fossil Methane

    No full text
    Radiocarbon (14C) measurements offer a unique investigative tool to study methane emissions by identifying fossil-fuel methane in air. Fossil-fuel methane is devoid of 14C and, when emitted to the atmosphere, causes a strong decrease in the ratio of radiocarbon to total carbon in methane (Δ14CH4). By observing the changes in Δ14CH4, the fossil fraction of methane emissions can be quantified. Presently, there are very few published Δ14CH4 measurements, mainly because it is challenging to collect and process the large volumes of air needed for radiocarbon measurements. We present a new sampling system that collects enough methane carbon for high precision Δ14CH4 measurements without having to transport large volumes of air. The system catalytically combusts CH4 into CO2 and adsorbs the combustion-derived CO2 onto a molecular sieve trap, after first removing CO2, CO, and H2O. Tests using reference air show a Δ14CH4 measurement repeatability of 5.4‰, similar or better than the precision in the most recent reported measurements. We use the system to produce the first Δ14CH4 measurements in central London and show that day-to-day differences in Δ14CH4 in these samples can be attributed to fossil methane input. The new system could be deployed in a range of settings to investigate CH4 sources

    Detection of fossil and biogenic methane at regional scales using atmospheric radiocarbon

    No full text
    Regional emissions of methane and their attribution to a variety of sources presently have large uncertainties. Measurements of radiocarbon (14C) in methane (CH4) may provide a method for identifying regional CH4 emissions from fossil versus biogenic sources because adding 14C‐free fossil carbon reduces the 14C/C ratio (Δ14CH4) in atmospheric CH4 much more than biogenic carbon does. We describe an approach for estimating fossil and biogenic CH4 at regional scales using atmospheric Δ14CH4 observations. As a case study to demonstrate expected Δ14CH4 and Δ14CH4‐CH4 relationships, we simulate and compare Δ14CH4 at a network of sites in California using two gridded CH4 emissions estimates (Emissions Database for Global Atmospheric Research, EDGAR, and Gridded Environmental Protection Agency, GEPA) and the CarbonTracker‐Lagrange model for 2014, and for 2030 under business‐as‐usual and mitigation scenarios. The fossil fraction of CH4 (F) is closely linked with the simulated Δ14CH4‐CH4 slope and differences of 2–21% in median F are found for EDGAR versus GEPA in 2014, and 7–10% for business‐as‐usual and mitigation scenarios in 2030. Differences of 10% in F for >200 ppb of added CH4 produce differences of >10‰ in Δ14CH4, which are likely detectable from regular observations. Nuclear power plant 14CH4 emissions generally have small simulated median influences on Δ14CH4 (0–7‰), but under certain atmospheric conditions they can be much stronger (>30‰) suggesting they must be considered in applications of Δ14CH4 in California. This study suggests that atmospheric Δ14CH4 measurements could provide powerful constraints on regional CH4 emissions, complementary to other monitoring techniques
    corecore